Correlation of Crop Yields and Soil Organic Carbon in Midwestern Region

INTRODUCTION

- Soil organic matter is an integral component of the soil (making soil alive).
- Soil organic matter improve soil quality, crop yields, and the environment by
 - Increasing water retention/release, reducing bulk density, and penetration resistance (Bot & Benites, 2005),
 - Enhancing nutrient retention (CEC)/release, buffering pH changes, reducing toxicity of contaminants (Barber, 1984),
 - Supporting soil microbes (e.g., N-fixing bacteria) and other biota (Six et al., 2002),
 - Protecting surface and ground water, and
 - Sequestration of atmospheric CO₂ (Lal, 2004).
- However, lack of research on quantitatively correlating crop yields to soil organic matter or soil organic carbon (SOC) contents for
 - Field data, and
 - US Midwestern region.

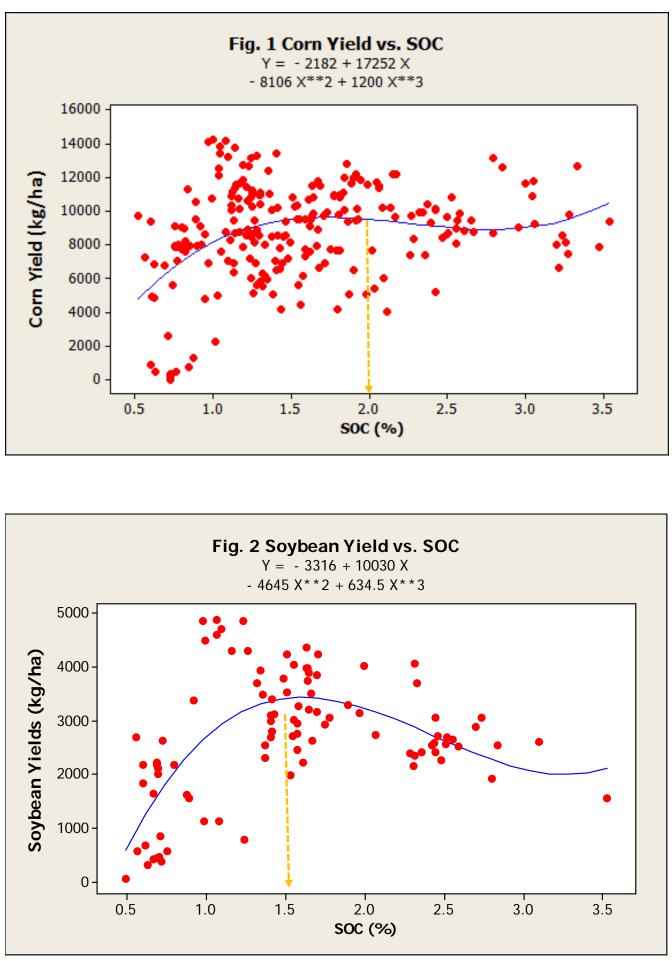
METHODS

- Uses of CS-CAP data base (www.sustaiablecorn.com):
 - Available agronomic data,
 - Available soil data.
 - Corn grain yield at 15.5% MB and soybean grain yield at 13.0% MB,
 - SOC average from two depth (0-10 and 10-20 cm) at the same plot and in the same year,
 - Data from all participating states included (but not from all the sites due to data unavailable),
 - All treatments have not been considered in this presentation .
- Regression method used for assessing correlations between crop yields and soil organic carbon (SOC).

RESULTS

- The average SOC content was 1.56 % ± 0.59 % in top 10- cm layer,
- The highest SOC found in Minnesota soil (3.53%),
- The lowest SOC found in Michigan soil (0.50%),

THE OHIO STATE UNIVERSITY


COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

- Soils contained similar SOC under corns (1.57 % ± 0.68%) or soybeans (1.54 % ± 0.69%),
- The average yield was 8769.7 ± 2837.1 kg/ha for corns and 2726.1 ± 1167.4 kg/ha for soybeans,
- Crop yields are positively correlated with soil organic matter or SOC contents (**Figs. 1 & 2**),
- The critical value of SOC for the highest yield is ~2.0% for corns (Fig. 1) and 1.5% for soybeans (Fig. 2),
- Yields do not significantly increase with further increase of SOC beyond these critical values,
- Polynomial models best fitted the field data (Yield vs. SOC, Table 1; **Figs.** 1 & 2).

Regression type

Richard (Ruigiang) Liu, Rattan Lal, and Raj Shrestha, CSCAP - Objective 1-Field Research Team, Carbon Management & Sequestration Center, the Ohio State University, Columbus, Ohio

RESULTS (continued)

Table 1 Regression of Crop Yields Versus Soil Organic Carbon **Using Different Models**

Corn yields (Y) vs.

Soybean yields (Y)

<i>.</i>	SOC (X)	vs. SOC (X)
linear	Y = 971X + 7243.2 $R^2 = 0.0535$	Y = 426.55x + 2067.3 $R^2 = 0.0636$
Exponential	Y = 4711.7e(0.3079X) $R^2 = 0.0699$	Y = 1247.6e(0.3988 x) R ² = 0.1458
Logarithmic	Y = 19571ln(X)+8058.8 R ² = 0.0861	Y = 945.96ln(X) + 2416.6 R ² = 0.1525
Polynomial (n=2)	Y = - 1193 X ² +5417.6 X +37 43.4 R ² = 0.1065	Y = -1169.6 X ² + 4421 X - 760.84 R ² = 0.3608
Polynomial (n=3)	Y = 1200 X ³ - 8106 X ² +17252 X - 2182 R2 = 0.138	$Y = 634.5 \mathbf{X}^3 - 4645 \mathbf{X}^2 + 10030 \mathbf{X} - 3316$ $R^2 = 0.424$
Power	$Y = 6102.8 \mathbf{X}^{0.6203}$ $R^2 = 0.1126$	$y = 1798.2x^{0.7654}$ $R^2 = 0.2619$

CONCLUSIONS

- Increasing soil organic matter content not only stores more C in the soil, but benefits crop yields,
- Highest crop yields found at 1.5-2% SOC in Midwestern soils,
- Polynomial function (n=3) best fits the field data.

