

Nitrogen and its role in agricultural resilience to climate change

Robert Anex University of Wisconsin, Madison Resilient Agriculture 2014

United States Department of Agriculture National Institute of Food and Agriculture

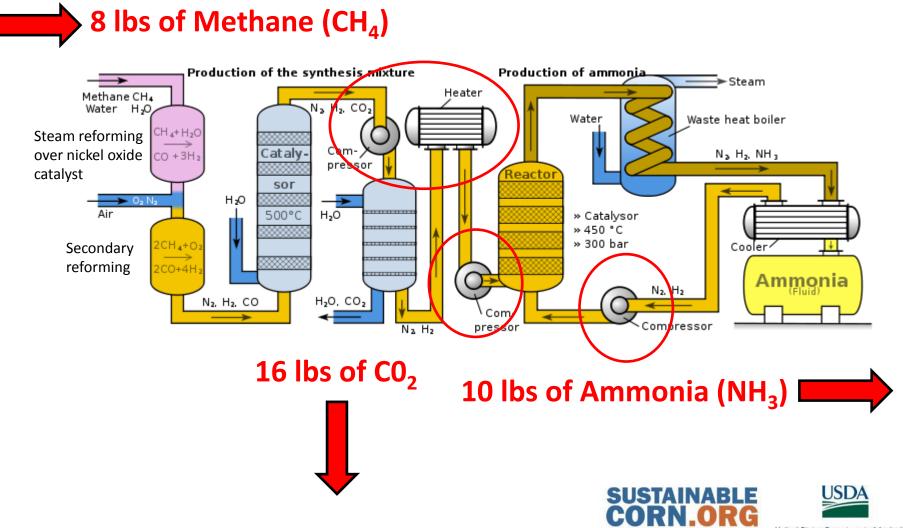
This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190: Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems

Ammonia synthesis has changed the world

Nitrogen fertilizer responsible for feeding 48% of the world's population in 2008

Erisman et al. 2008

Ammonia synthesis has changed farming



Stewart et al. 2005 Erisman et al. 2008

Ammonia Synthesis by Haber-Bosch

United States Department of Agriculture National Institute of Food and Agriculture

CROPS, CLIMATE, CULTURE AND CHANGE

Making the N fertilizer used on U.S. corn in 2011 emitted GHGs equal to...

Image: ThomasSD @ de.wikipedia (Own work) [Public domain], via Wikimedia Commons

Upstream effects of N-production

- 45% of life cycle energy use in corn production is in N fertilizer production
- 40% of life cycle GHG emissions are associated with N fertilizer production

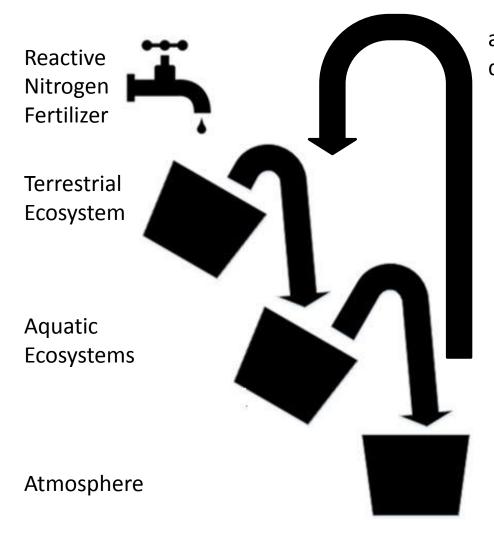
The only way to reduce upstream effects is to reduce N use

Ammonia synthesis has changed farming

41% of U.S. corn yield attributable to nitrogen fertilizer

80% of nitrogen fixed by Haber-Bosch process is used in fertilizer

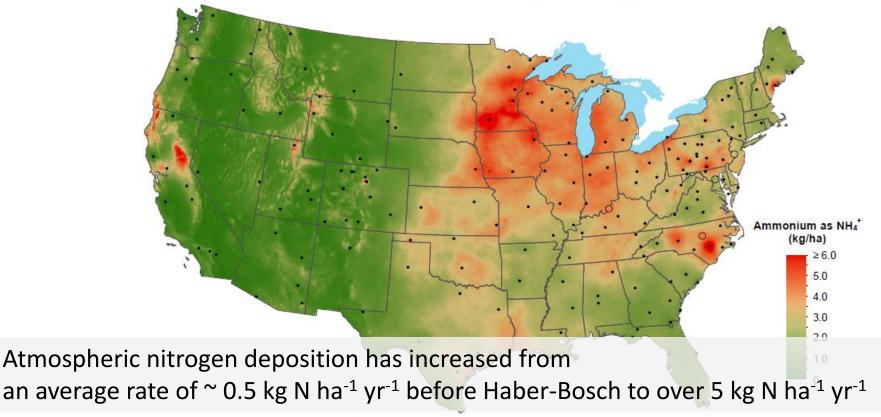
Of the 100 Tg N applied worldwide in 2005, only 17 Tg N was consumed by humans in crop, dairy and meat product.


Up to 70% of nitrogen applied to corn is harvested in grain

Stewart et al. 2005 Erisman et al. 2008

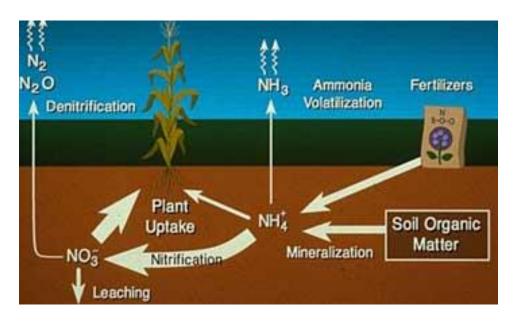
Nitrogen Cascade of Effects

atmospheric deposition


- Soil acidification
- Biodiversity loss
- Surface & groundwater quality
- Eutrophication
- Biodiversity loss
- Particulate matter & visibility
- Tropospheric ozone increase
- Stratospheric ozone loss
- Greenhouse effects

N Fertilization is (BIG) Global Change

Ammonium ion wet deposition, 2012


National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

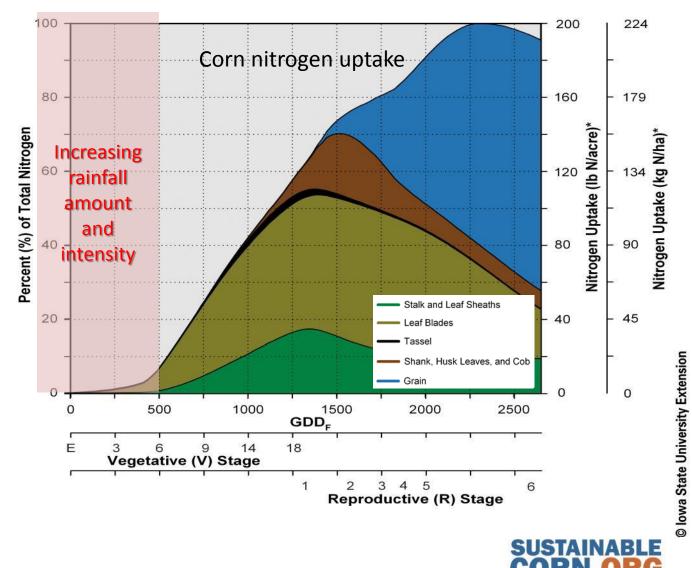
Public domain image

How is nitrogen lost from the field?

- leaching
- denitrification
- ammonia volatilization

Mathesius and Luce, Pioneer. Assessing and Managing Nitrogen Losses in Corn

Changing Climate in Midwest


- Increase in atmospheric CO₂
- Increased atmospheric & soil temperatures

- Precipitation:
 - More in spring
 - More intense storms

Increasing rainfall when risk of nitrate loss is greatest

Iowa State University Extension PMR 1009 (2011).

Used by permission: Peter Scharf

Resilience through Nitrogen Management

- Side-dress
 - planned side-dress
 - reactive side-dress/top-dress

CLIMATE, CULTURE AND CHANGE

Resilience through Nitrogen Management

- Side-dress
 - planned side-dress
 - reactive side-dress/top-dress
- Nitrification inhibitors, urease inhibitors, coated urea

Other Management Practices

- Side-dress
 - planned side-dress
 - reactive side-dress/top-dress
- Nitrification inhibitors, urease inhibitors, coated urea
- Cover crops

Other Management Practices

- Side-dress
 - planned side-dress
 - reactive side-dress/top-dress
- Nitrification inhibitors, urease inhibitors, coated urea
- Cover crops
- Extended rotation

Other Management Practices

- Side-dress
 - planned side-dress
 - reactive side-dress/top-dress
- Nitrification inhibitors, urease inhibitors, coated urea
- Cover crops
- Extended rotation
- Drainage water management

Goal: Resilience & Nutrient Reduction

	Practice	Comments	% Nitrate-N Reduction ⁺	% Corn Yield Change ⁺⁺
				Average (SD*)
Nitrogen Management	Timing	Moving from fall to spring pre-plant application	6 (25)	4 (16)
		Spring pre-plant/sidedress 40-60 split Compared to fall-applied	5 (28)	10 (7)
		Sidedress – Compared to pre-plant application	7 (37)	0 (3)
		Sidedress – Soil test based compared to pre-plant	4 (20)	13 (22)**
	Source	Liquid swine manure compared to spring-applied fertilizer	4 (11)	0 (13)
		Poultry manure compared to spring-applied fertilizer	-3 (20)	-2 (14)
	Nitrogen Application Rate	Nitrogen rate at the MRTN (0.10 N:corn price ratio) compared to current estimated application rate. (ISU Corn Nitrogen Rate Calculator – http://extension.agron.iastate.edu/soilfertility/nrate.aspx can be used to estimate MRTN but this would change Nitrate-N concentration reduction)	10	-1
	Nitrification Inhibitor	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin	9 (19)	6 (22)
	Cover Crops	Rye	31 (29)	-6 (7)
		Oat	28 (2)	-5 (1)
	Living Mulches	e.g. Kura clover – Nitrate-N reduction from one site	41 (16)	-9 (32)
5	Extended Rotations	At least 2 years of alfalfa in a 4 or 5 year rotation	42 (12)	7 (7)
Other	Drainage Water Mgmt.	No impact on concentration	33 (32)	

Lawrence (2013). Reducing Nutrient Loss. SP 0435

Nitrogen Resilience to Climate Change means:

- Maintaining flexibility in N fertilization so rate can be adjusted to match year (sidedress, top-dress, inhibitors in some places).
- Minimizing N release from field (cover) crop, extended rotations, buffers and drainage water management).

References

Erisman, J. W., M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter (2008). How a century of ammonia synthesis changed the world. *Nature Geosciences* 1: 636:639.

Stewart, W. M., Dibb, D. W., Johnston, A. E., & Smyth, T. J. (2005). The contribution of commercial fertilizer nutrients to food production. *Agronomy Journal*, *97*(1), 1-6.

Karl, T. R., J. M. Melillo, T.C. Peterson, eds. (2009). *Global Climate Change Impacts in the United States*. Cambridge University Press.

Abendroth, L. J., R. W. Elmore, M. J. Boyer, S. K. Marlay. (2011). *Corn Growth and Development*. Iowa State University Extension, PMR 1009.

Lawrence, J. (2013). *Reducing Nutrient Loss: Science shows what works*. Iowa State University Extension, SP 0435.